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11
Multiple Comparison Procedures
in Dose Response Studies

AJIT C. TAMHANE AND BRENT R. LOGAN

11.1 Introduction

Dose–response studies are useful in Phase II and Phase III clinical trials to evaluate
efficacy and toxicity of a drug in order to determine its effective and safe ranges.
A zero dose is generally included as a control against which higher doses are
compared. This naturally leads to multiple comparisons. The ordered nature of
doses suggests the use of stepwise multiple test procedures. The purpose of this
article is to give a brief overview of these procedures. In Section 11.2, we present
step-down procedures for identifying the minimum effective dose (MinED). These
procedures are applied to the problem of identifying the maximum safe dose
(MaxSD) in Section 11.3. Examples are given in Section 11.4 followed by some
extensions in Section 11.5. The paper concludes with a discussion in Section 11.6.

11.2 Identifying the Minimum Effective Dose (MinED)

11.2.1 Problem Formulation

Let i = 0, 1, . . . , k represent increasing dose levels, where 0 denotes the zero
(control) dose. Assume that the efficacy measurements Yi j (1 ≤ j ≤ ni ) on the
i th dose are independent and normally distributed with mean µi and variance
σ 2, denoted by Yi j ∼ N (µi , σ

2). We assume that a larger µi represents higher
efficacy. Let Y i ∼ N (µi , σ

2/ni ) be the sample mean and S2 ∼ σ 2χ2
ν /ν be the

pooled sample variance based on ν = ∑k
i=0 ni − (k + 1) degrees of freedom (df).

It is common to use the mean efficacy of the zero dose as a benchmark for
comparison purposes to decide if a particular dose is clinically effective. Two dif-
ferent measures are employed for this purpose. The first is the difference measure,
δi = µi − µ0, with a specified additive threshold δ > 0 that this difference must
exceed in order for dose i to be deemed effective. The second is the ratio measure,
λi = µi/µ0, with a specified multiplicative threshold λ > 1 that this ratio must
exceed in order for dose i to be deemed effective. Here we adopt the latter approach
since it requires an investigator to specify the threshold in relative terms instead of
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absolute terms, which is often more difficult. Thus, e.g., if a 10% increase in the
mean efficacy compared to the zero dose is regarded as clinically significant then
λ = 1.10. However, it should be noted that the use of the multiplicative threshold
assumes that µ0 > 0. If µ0 is positive but close to zero, very large values of λ

must be specified. Procedures using the additive threshold are briefly covered in
Section 11.5.

The true MinED can be defined in two ways. A simple definition is

MinED = min{i : µi > λµ0} (11.1)

which is the lowest dose that is effective. For a stronger requirement on MinED
the following definition is used:

MinED = min{i : µ j > λµ0 for all j ≥ i} (11.2)

This is the lowest dose such that it and all higher doses are effective.
In some applications it is reasonable to assume that the dose–response curve

satisfies a monotone property that if dose i is ineffective then all lower doses are
also ineffective, and if dose i is effective then all higher doses are also effective.
Formally,

µi ≤ λµ0 ⇒ µ j ≤ λµ0 ∀ j < i and µi > λµ0

⇒ µ j > λµ0 ∀ j > i (11.3)

This will be referred to as the weak monotonicity assumption as opposed to the
strong monotonicity assumption:

µ0 ≤ µ1 ≤ · · · ≤ µk (11.4)

If the dose–response relationship is weakly monotone, then the two definitions of
MinED are equivalent.

We want to guarantee that the probability of any ineffective dose being declared
effective is no more than a specified level α. Let ̂MinED denote the sample or
estimated MinED. Under weak monotonicity, this requirement translates to

P( ̂MinED < MinED) ≤ α (11.5)

Our approach to identifying MinED will be via tests of the hypotheses

Hi : µi ≤ λµ0 (1 ≤ i ≤ k) (11.6)

against one-sided alternatives. If using definition (11.1), the estimated MinED is
defined as

̂MinED = min{i : Hi is rejected } (11.7)

If using definition (11.2), the estimated MinED is defined as

̂MinED = min{i : Hj is rejected for all j ≥ i} (11.8)
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If the multiple test procedure controls the familywise error rate (FWE), defined as

FWE = P{Reject any true Hi } (11.9)

strongly (for any combination of true and false Hi ) at level α then the requirement
in Eq. (11.5) is satisfied. However, note that if the dose response curve is not
weakly monotone, then the interpretation of Eq. (11.5), and the associated FWE,
as the probability of any ineffective dose being declared effective only holds for
definition (11.1).

In the next two subsections we will consider two types of multiple test proce-
dures. The SD1PC procedure estimates the MinED according to definition (11.1).
The SD2PC procedure estimates the MinED according to definition (11.22). When
it is reasonable to assume monotonicity, the two definitions are equivalent and ei-
ther SD1PC or SD2PC may be used.

11.2.2 Review of Multiple Test Procedures

Various procedures based on different contrasts of the dose means have been pro-
posed in the literature (Ruberg, 1989, Tamhane et al., 1996, Dunnett and Tamhane,
1998). Here we will only consider step-down procedures based on pairwise con-
trasts because (1) as shown by Bauer (1997), only pairwise contrasts yield proce-
dures that control the FWE even when the dose response is not monotone, (2) they
are simple to use, and (3) they can be easily extended to nonnormal data by using
appropriate two-sample statistics. See the papers referenced above for procedures
based on general contrasts.

The traditional method for deriving step-down multiple test procedures is based
on the closure principle due to Marcus et al., (1976). More recently, Hsu andAu: Marcus

et al. (1976) is
not in the ref.
list

Berger (1999) and Finner and Strassburger (2002) have proposed the partitioning
principle to derive more powerful test procedures. We now explain these principles
and the resulting test procedures.

11.2.2.1 Closure Principle: SD1PC Procedure

The closure principle requires a closed family of hypotheses. If we define the hy-
potheses H ′

i = ⋂i
j=1 Hj meaning all doses at or below dose i are ineffective, then

{H ′
i (1 ≤ i ≤ k)} is a closed family. (Note that this does not require the monotonic-

ity assumption.) The closure principle tests each hypothesis H ′
i , if it is not already

accepted, at level α. If H ′
i is not rejected then the closure principle accepts all H ′

j
that are implied by H ′

i without further tests. The representation H ′
i = ⋂i

j=1 Hj

shows that all H ′
j for j < i are implied by H ′

i . This leads to a step-down test
procedure in which H ′

k is tested first. If H ′
k is not rejected then all hypotheses are

accepted and no dose is declared effective. Otherwise H ′
k−1 is tested next and the

testing sequence continues. If H ′
i is the last rejected hypothesis then ̂MinED = i .
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For the normal data assumed here, define the pairwise t-statistic corresponding
to hypothesis Hi as

Ti = Y i − λY 0

S
√

λ2/n0 + 1/ni

(1 ≤ i ≤ k). (11.10)

Then using the union-intersection (UI) method of Roy (1953), the statistic for
testing H ′

i is Ti,max = max1≤ j≤i Tj . Under H ′
i (assuming the least favorable con-

figuration µ j = λµ0 ∀ j ≤ i , which maximizes the FWE), the joint distribution
of T1, T2, . . . , Ti is an i-variate t-distribution with ν df and correlation matrix
Ri = {ρ j�}, which has a product correlation structure, ρ j� = τ jτ�, with

τ j = λ√
λ2 + r j

and r j = n0

n j
(1 ≤ j ≤ k) (11.11)

If n1 = n2 = · · · = nk = n and r = n0/n then ρ j� ≡ ρ = λ2/(λ2 + r ). Let t (α)
i,ν,Ri

denote the upperα equicoordinate critical point of this i-variate t-distribution. Then
the closed procedure rejects H ′

i at level α iff H ′
k, . . . , H ′

i+1 have been rejected and

Ti,max > t (α)
i,ν,Ri

This is referred to as the SD1PC procedure. Note that the critical constants used in
SD1PC are different if smaller µi ’s represent higher efficacies with the threshold
λ < 1. This is so because the ρ j� are not invariant to the transformation λ ← 1/λ

or λ ← λ − 1. Also, as pointed out earlier, the SD1PC procedure is appropriate
for definition (11.1) of the MinED in the sense that it will control the error rate in
Eq. (11.5) for this definition, but it can also be used for definition (11.2) under the
assumption of monotonicity, in which case H ′

i = Hi = ⋂i
j=1 Hj .

11.2.2.2 Partitioning Principle: SD2PC Procedure

The partitioning principle reformulates the hypotheses (11.6) so that they are dis-
joint. There are different ways to accomplish this. One way is to write the hypothe-
ses as

H∗
i : µi ≤ λµ0, µ j > λµ0 ∀ j > i (1 ≤ i ≤ k) (11.12)

For the sake of completeness, add the hypothesis H∗
0 : µ j > λµ0 ∀ j , which need

not be tested. This partitioning is appropriate when efficacy is expected to increase
with dose. Note that the hypotheses H∗

i are disjoint with their union being the
whole parameter space, and the true parameter configuration belongs to exactly
one of the H∗

i . Therefore, no multiplicity adjustment is needed to perform the tests
and each H∗

i can be tested at level α independently of the others. Final inferences
drawn must be logically consistent with the H∗

i that are not rejected. This procedure
controls the error rate in Eq. (11.5) corresponding to the more stringent definition
(11.2) of the MinED.

Note that the above formulation of the hypotheses implies that doses must be
tested in a step-down manner in the order H∗

k , H∗
k−1, . . ., stopping as soon as any

hypothesis is accepted. For example, suppose k = 5, and all five hypotheses are
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tested, but only H∗
5 , H∗

4 and H∗
2 are rejected. Then we can only conclude that doses

5 and 4 are effective, but not dose 2. Thus, we get ̂MinED = 4 and so testing can
be stopped once H∗

3 is accepted.
The main difficulty in applying the partitioning principle is that it is not easy to

derive tests of the hypotheses H∗
i . However, by noting that H∗

i is a subset of Hi ,
we see that an α-level test of Hi provides a conservative α-level test of H∗

i . This
leads to a step-down test procedure on the family {Hi (1 ≤ i ≤ k)}. Therefore, for
testing Hi , we use the ordinary Student’s t-test, which rejects Hi (assuming that
Hk, . . . , Hi+1 have been rejected) if Ti > tν,α , where tν,α is the upper α critical
point of the univariate Student’s t-distribution with ν df The resulting step-down
procedure is referred to as the SD2PC procedure.

Although we have derived the SD2PC procedure by using the partitioning prin-
ciple, it can also be derived by noting that the a priori ordering of the hypotheses
results in their nesting: Hk ⊆ Hk−1 ⊆ · · · ⊆ H1. This approach is employed by
Maurer et al. (1995) to show that SD2PC controls the FWE strongly.

Finally we note that both SD1PC and SD2PC are predetermined testing proce-
dures since they both test the hypotheses Hk, Hk−1, . . . in a pre-determined order
not in a sample-determined order (see Chapter 9).

11.2.3 Simultaneous Confidence Intervals

Bretz et al. (2003) proposed stepwise confidence intervals for the ratios λi = µi/µ0

based on Fieller’s (1954) method. Consider the r.v.

Ti = Y i − λi Y 0

S
√

λ2
i /n0 + 1/ni

which is t-distributed with ν d f By solving the inequality Ti ≤ tν,α , which is an
event of probability 1 − α, we get the following 100(1 − α)% lower confidence
bound on λi :

λi ≥ Li = Y 0Y i −
√

a0Y
2
i + ai Y

2
0 − a0ai

Y
2
0 − a0

where ai = t2
ν,α S2/ni (0 ≤ i ≤ k).

For identifying the MinED Bretz et al. (2003) embedded these marginal 100(1 −
α)% confidence intervals into the following step-down procedure, which does not
require any multiplicity adjustment according to the results of Hsu and Berger
(1999).

STEP 1: If Lk ≤ λ then conclude that λk ≥ Lk , all doses are ineffective and stop.
Otherwise conclude that λk > λ (dose k is effective) and go to Step 2.

STEP i : If Lk−i+1 ≤ λ then conclude that λk−i+1 ≥ Lk−i+1, doses 1, . . . , k − i + 1
are ineffective and stop. Otherwise conclude that λk−i+1 > λ (dose k − i + 1 is
effective) and go to Step i + 1.

STEP k + 1: Conclude that min1≤i≤k λi ≥ min1≤i≤k Li .
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This test procedure is equivalent to the SD2PC procedure because it is derived
from it. However, additionally, it yields lower confidence bounds on the λi ’s for
all doses found effective and the first dose found ineffective.

11.3 Identifying the Maximum Safe Dose (MaxSD)

All of the preceding discussion extends naturally to the problem of identifying the
MaxSD in toxicity studies with a few minor changes as we note below. In order
to keep the forms of the hypotheses (11.6) and the test statistics in Eq. (11.10) the
same, and also to conform with the past literature, we will assume that lower µi

implies a more toxic (less safe) dose. Toxicity generally increases with dose level
and the zero dose has the least toxicity. Therefore the µi ’s are generally decreasing
and the threshold λ < 1. Thus, dose i with µi > λµ0 is regarded as safe, while
dose i with µi ≤ λµ0 is regarded as unsafe. For example, λ = 0.90 means that a
10% decrease in safety level (increase in toxicity) is regarded as clinically unsafe.

The maximum safe dose (MaxSD) for specified λ < 1 is defined as

MaxSD = max{i : µ j > λµ0 ∀ j ≤ i}
Analogous to the discussion of the MinED, there could be two definitions of the
MaxSD. However, we assume monotonicity of the toxicity response so that the
definitions are identical. The hypotheses are the same as in Eq. (11.6) (where now
Hi states that the i th dose is unsafe). If

̂MaxSD = max{i : Hj is rejected ∀ j ≤ i}
denotes the estimated MaxSD then we want to guarantee that

P( ̂MaxSD > MaxSD) ≤ α (11.13)

Since the goal is now to find the MaxSD, both SD1PC and SD2PC start by
testing H1 and proceed to testing H2 if H1 is rejected (dose 1 is declared safe) and
so on. If H1 is not rejected then all Hi are accepted without further tests and all
doses are declared unsafe, i.e., there is no MaxSD. SD1PC rejects Hi using the
representation Hi = ⋂k

j=i Hj if

Ti,max = max
i≤ j≤k

Tj > t (α)
�,ν,R�

where � = k − i + 1 and R� = {ρi j }, while SD2PC rejects Hi if Ti > tν,α . For
details see Tamhane et al.

11.4 Examples

Example 1 (Identifying the MinED): Tamhane and Logan (2002) cite an example
of a Phase II randomized, double-blind, placebo-controlled parallel group clinical
trial of a new drug for the treatment of arthritis of the knee using four increasing
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doses (labeled 1 to 4). While they consider both efficacy and safety outcomes
in that study, here we focus only on the efficacy data. A total of 370 patients
were randomized to the five treatment groups. The efficacy variable is the pooled
WOMAC (Western Ontario and McMaster Universities osteoarthritis index) score,
a composite score computed from assessments of pain (5 items), stiffness (2 items),
and physical function (17 items). The composite score is normalized to a scale of
0–10. An increase in WOMAC from the baseline indicates an improvement in
disease condition. We will consider a 30% improvement in WOMAC scores over
the baseline mean compared to that for the zero dose group a clinically significant
improvement, so that λ = 1.3.

The summary data are given in Table 11.1. Normal plots were found to beTable 11.1
satisfactory, and the Bartlett and Levene tests for homogeneity of variances yielded
nonsignificant results. The sample sizes are approximately equal so that ri ≈ r = 1
and ρi j ≈ ρ = 1.302/(1.302 + 1) = 0.628. The pooled estimate of the standard
deviation is 1.962 with ν = 365 d f The t-statistics computed using Eq. (11.10)
are given in Table 11.2.Table 11.2

Table 11.1. Summary statistics for changes from baseline in
WOMAC score

Dose level

0 1 2 3 4

Mean 1.437 2.196 2.459 2.771 2.493
SD 1.924 2.253 1.744 1.965 1.893
n 76 73 73 75 73

Table 11.2. t-Statistics and unadjusted p-values
for WOMAC scores

Comparison

1 vs. 0 2 vs. 0 3 vs. 0 4 vs. 0

Ti 0.881 1.588 2.439 1.680
pi 0.189 0.056 0.007 0.047

The SD1PC procedure begins by comparing T4,max = 2.439 with the critical
value t (.05)

4,365,0.628 = 2.123. Since 2.439 > 2.123, we step down to compare dose
3 with the control. In fact, we can take a shortcut and step down to compare
dose 2 with the control, since T4,max = T3 = 2.439 and the multivariate T-critical
values decrease with dimension implying rejection of H3. So, next we compare
T2,max = 1.588 with the critical value t (.05)

2,365,0.628 = 1.900. Since 1.588 < 1.900, we
accept hypothesis H2 and by implication hypothesis H1, leading to the conclusion
that ̂MinED = 3.

The SD2PC procedure begins by comparing T4 = 1.680 with the critical value
t365,.05 = 1.649. Both T4 and T3 = 2.439 exceed 1.649, so we reject H4 and H3.
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Next T2 = 1.588 < 1.649, so we stop and accept H2 and hence H1 by implication,
leading to the same conclusion that ̂MinED = 3.

To compute stepwise 95% confidence intervals using the Bretz et al. method we
first compute

L1 = 1.136, L2 = 1.288, L3 = 1.468, L4 = 1.308

Since L4 and L3 are both greater than λ = 1.30 we conclude that both doses 4
and 3 are effective. But L2 < λ = 1.30, and so we stop and conclude that dose 2
is ineffective and λ2 ≥ 1.288. Obviously, we get the same conclusion as SD2PC,
but additionally we get confidence bounds on λ4, λ3 and λ2.

Example 2 (Identifying the MaxSD): Tamhane et al. (2001) cite an aquatic
toxicology study in which daphnids, or water fleas (Daphnia magna), were exposed
over 21 days to a potentially toxic compound. Daphnids of the same age and
genetic stock were randomly assigned to a water control, a solvent control, or
one of six concentrations of a pesticide. The safety endpoint of interest was the
growth, as measured by the lengths of the daphnids after 21 days of continuous
exposure. Because there was no significant difference between the two control
groups, they were combined for subsequent analysis. Six nominal concentrations
of the pesticide were tested: 0.3125, 6.25, 12.5, 25, 50, and 100 ppm. Forty daphnids
were randomly assigned to each group, but because some died during the course
of the experiment they were not evaluable. Also, because of excessive mortality
in the 100 ppm dose group, this dose was omitted from subsequent analysis. This
follows the recommendation of Capizzi et al. (1985) for a two-stage approach, in
which survival is studied in the first stage, and sublethal effects (such as growth)
are compared among those doses which do not significantly affect survival. In the
toxicology community, opinions about what constitutes a biologically significant
effect have ranged from 5 to 25% adverse effect. If we take an average of this
range, i.e., 15% reduction in length or λ = 0.85 as biologically unsafe, then we
would like to know which dose is the MaxSD for this value of λ.

The summary statistics are given in Table 11.3. Normal plots were found to be Table 11.3
satisfactory, and the Levene test for homogeneity of variances was nonsignificant.
The pooled estimate of the standard deviation is 0.1735 with ν = 254 df Additional
analyses of variance were performed on the data as discussed in Tamhane et al.
(2002), but we do not elaborate on them here. The sample sizes in the nonzero
dose groups were all approximately equal, so that ri ≈ r = 80/36 = 2.222 and
ρij ≈ ρ = 0.852/(0.852 + 2.222) = 0.245. The t-statistics computed using Eq.
(11.10) are given in Table 11.4. Table 11.4

Table 11.3. Summary statistics for daphnid length data

Dose level

0 1 2 3 4 5

Mean 4.0003 3.9908 3.8108 3.6306 3.4600 3.2106
SD 0.1496 0.2110 0.1504 0.1961 0.1726 0.1829
n 80 38 39 35 35 33
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Table 11.4. t-Statistics and unadjusted p-values
for daphnid length data

Comparison

1 vs. 0 2 vs. 0 3 vs. 0 4 vs. 0 5 vs. 0

Ti 18.082 12.692 6.838 1.774 −5.505
pi 0.000 0.000 0.000 0.038 1.000

For the SD1PC procedure, the critical values are t (.05)
5,254,0.245 = 2.307, t (.05)

4,254,0.245 =
2.224, t (.05)

3,254,0.245 = 2.114, t (.05)
2,254,0.245 = 1.952, and t (.05)

1,254,0.245 = 1.652. The SD1PC
procedure proceeds by comparing the statistics Ti,max to the critical values in
sequence, starting with T1,max = 18.082. These are rejected in sequence until we
come to T4,max = 1.774, which is less than 1.952. Therefore, we conclude that̂MaxSD = 3.

The SD2PC procedure proceeds by comparing each t-statistic with the critical
value t254,.05 = 1.652, starting with dose 1. H4 is the last hypothesis rejected, since
T4 = 1.774 > 1.652 and T5 = −5.505 < 1.652. Therefore, we stop and accept
H5, leading to the conclusion that ̂MaxSD = 4. Note that SD2PC found dose 4 to
be safe, whereas SD1PC did not.

11.5 Extensions

Several extensions of the basic methods described above have been studied in the
literature. We briefly summarize a few below.

1. Multiple test procedures based on general contrasts are given in Ruberg (1989),
Tamhane et al. (1996), Dunnett and Tamhane (1998), and Tamhane et al. (2001).
The first three papers use the difference measure approach. Specifically, when
using the difference measure approach for the MinED problem, a general con-
trast for testing Hi : µi ≤ µ0 + δ is given by

Ci = ci0(Y 0 + δ) + ci1Y 1 + · · · + cikY k (1 ≤ i ≤ k)

where the contrast coefficients ci j sum to zero. The corresponding test statistic
is

Ti = Ci

s.e.(Ci )
= Ci

S
√∑I

j=0 c2
i j/n j

(1 ≤ i ≤ k)

The Ti have a multivariate t-distribution with correlations that depend on
the ci j and the ni . If the dose response shape is known a priori then the ci j

can be chosen to mimic its shape, e.g., if the shape is roughly linear then
one can use linear contrasts in which the ci j form an arithmetic progression.
However, often such knowledge is lacking. Previous simulation studies have
shown that the procedures based on Helmert contrasts, in which ci j = −1, for
j = 0, 1, . . . , i − 1, cii = i and ci j = 0 for j > i , perform better than those
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based on other contrasts when the minimum effective dose is at the high end or
when the dose response shape is convex, and do not perform too badly in other
cases. Another advantage of Helmert contrasts is that for a balanced design
(n0 = n1 = · · · = nk) they are uncorrelated, i.e., ρi j = 0. Effectively, the i th
Helmert contrast compares the i th dose level mean with the average of all the
lower dose level means (including the zero dose).
Other trend tests are available as well for testing the hypotheses at each stage
of the step-down procedure. Abelson and Tukey (1963) propose a contrast
test which minimizes the maximum power loss over the alternative hypothesis
space. Stewart and Ruberg (2000) propose using the maximum of several well-
defined contrast tests to improve the robustness of the trend test to different
dose–response shapes. Tests could alternatively be based on isotonic regression
(Robertson et al. 1988; Williams 1971, 1972).

2. The problem of identifying the MinED and MaxSD simultaneously is consid-
ered in Tamhane and Logan (2002); see also Bauer et al. (2001). The therapeutic
window is defined as the interval [MinED, MaxSD] if this interval is nonempty.
This interval is estimated by [ ̂MinED, ̂MaxSD] subject to the requirement that
the probability that [ ̂MinED, ̂MaxSD] contains any ineffective or unsafe doses
is less than or equal to a prespecified level α, i.e.,

P
{ ̂MinED < MinED or ̂MaxSD > MaxSD

} ≤ α

Tamhane and Logan (2002) investigated several strategies, including α-
splitting, where the MinED is identified with Type I error αE and the MaxSD is
identified with Type I error αS so that αE + αS = α. They also proposed more
efficient bootstrap procedures which take into account the correlation between
efficacy and safety variables.

3. In many applications the assumption of homoscedasticity of variances is not
satisfied. In Tamhane and Logan (2004), we give extensions of the procedures
discussed here as well as those based on Helmert contrasts when the dose
response data are heteroscedastic.

4. Nonparametric extensions of the step-down procedures for identifying the
MinED are given by Chen (1999), Sidik and Morris (1999), Chen and Jan
(2002), and Jan and Shieh (2004).

11.6 Discussion

In this section, we compare the methodology proposed in this paper with that cur-
rently practiced by the U.S. Food and Drug Administration (FDA). For simplicity
assume a single dose or drug. Then the FDA’s criterion for efficacy consists of the
proof of statistical significance and of clinical significance. Denoting the means
for the control and the drug by µ0 and µ1, respectively, the statistical significance
criterion is met if H0 : µ1 ≤ µ0 is rejected in favor of the one-sided alternative
H1 : µ1 > µ0 at the α-level (usually 2.5%). For clinical significance, if the ratio
measure is adopted then it is required that µ̂1/µ̂0 > λ, where λ > 1 is a specified
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threshold. Thus it is required that the 100(1 − α)% confidence interval for µ1/µ0

lie above 1, but only the point estimate of µ1/µ0 lie above the threshold λ. On the
other hand, our approach tests H0 : µ1 ≤ λµ0 vs. H0 : µ1 > λµ0 and thus requires
that the 100(1 − α)% confidence interval for µ1/µ0 lie above λ, which is a stricter
requirement. The two approaches are equivalent if λ = 1. We recommend that the
stricter requirement with λ > 1 be adopted since requiring that the point estimate
µ̂1/µ̂0 > λ does not guarantee that the true ratio µ1/µ0 > λ with 100(1 − α)%
confidence. Similar discussion applies if the difference measure is used. In either
case, another practical problem is how to specify the threshold.
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